Soil moisture initialization for climate prediction: Assimilation of scanning multifrequency microwave radiometer soil moisture data into a land surface model
نویسندگان
چکیده
[1] Climate model prediction skill is currently limited in response to poor land surface soil moisture state initialization. However, initial soil moisture state prediction skill can potentially be enhanced by the assimilation of remotely sensed near-surface soil moisture data in off-line simulation. This study is one of the first to evaluate such potential using actual remote sensing data together with field observations. Here the ensemble Kalman filter (Kalman, 1960) is used to assimilate scanning multifrequency microwave radiometer derived near-surface soil moisture data from 1979 to 1987 into the catchmentbased land surface model (CLSM). CLSM is used by the NASA Goddard Modeling and Assimilation Office global climate model. Enhancement to land surface soil moisture initialization skill is evaluated for Eurasia using the ground soil moisture measurements collected in Russia, Mongolia, and China. As initial model and observation error predictions were poor, the assimilation improved both the surface and root zone soil moisture estimates only when the observation error was less than the model error. This emphasizes the need for good quality remotely sensed soil moisture data sets, together with reliable observation and model error assessments, in order to ensure improved soil moisture estimates through data assimilation. When the relative magnitude of predicted observation and model error was matched to the error determined from field observation comparison, improvements in root zone and surface soil moisture estimates were guaranteed given unbiased model and satellite observations.
منابع مشابه
Global Soil Moisture from Satellite Observations, Land Surface Models, and Ground Data: Implications for Data Assimilation
Three independent surface soil moisture datasets for the period 1979–87 are compared: 1) global retrievals from the Scanning Multichannel Microwave Radiometer (SMMR), 2) global soil moisture derived from observed meteorological forcing using the NASA Catchment Land Surface Model, and 3) ground-based measurements in Eurasia and North America from the Global Soil Moisture Data Bank. Time-average ...
متن کاملSoil Moisture Initialization for Climate Prediction: Characterization of Model and Observation Errors
Current models for seasonal climate prediction are limited due to poor initialization of the land surface soil moisture states. Passive microwave remote sensing provides quantitative information on soil moisture in a thin near-surface soil layer at large scale. This information can be integrated with a land surface process model through data assimilation to give better prediction of the near su...
متن کاملA methodology for initializing soil moisture in a global climate model: Assimilation of near-surface soil moisture observations
Because of its long-term persistence, accurate initialization of land surface soil moisture in fully coupled global climate models has the potential to greatly increase the accuracy of climatological and hydrological prediction. To improve the initialization of soil moisture in the NASA Seasonal-to-Interannual Prediction Project (NSIPP), a onedimensional Kalman filter has been developed to assi...
متن کاملAn EKF assimilation of AMSR-E soil moisture into the ISBA land surface scheme
[1] An Extended Kalman Filter (EKF) for the assimilation of remotely sensed nearsurface soil moisture into the Interactions between Surface, Biosphere, and Atmosphere (ISBA) model is described. ISBA is the land surface scheme in Météo-France’s Aire Limitée Adaptation Dynamique développement InterNational (ALADIN) Numerical Weather Prediction (NWP) model, and this work is directed toward providi...
متن کاملSpatially and Temporally Complete Satellite Soil Moisture Data Based on a Data Assimilation Method
Multiple soil moisture products have been generated from data acquired by satellite. However, these satellite soil moisture products are not spatially or temporally complete, primarily due to track changes, radio-frequency interference, dense vegetation, and frozen soil. These deficiencies limit the application of soil moisture in land surface process simulation, climatic modeling, and global c...
متن کامل